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The earliest known reference to the mode-locking, or entrainment, of two maintained oscillators is
Christiaan Huygens' description of two pendulum clocks ‘‘falling into synchrony’’ when hung on
the same wall. We describe an analogous phenomenon in acoustics—the mode-locking of two
thermoacoustic engines which have their cases rigidly welded together, but which are otherwise
uncoupled. This **mass-coupling’’ might compete with acoustic coupling when the latter is used to
enforce antiphase mode-locking in such engines, for vibration cancellation. A simple theory relating
the phase difference between the engines in the locked state to the corresponding ratio of their
pressure amplitudes is in excellent agreement with theory and numerical simulations. The theory’s
prediction relating the phase difference to the engines' natural frequency difference is qualitatively
confirmed by experiment, despite larger experimental uncertainties. The mass coupling is relatively
weak compared to the aforementioned acoustic coupling, and in general occurs in antiphase, so we
conclude that mass coupling will not interfere with vibration cancellation by acoustic coupling in

most circumstances. © 2000 Acoustical Society of America. [S0001-4966(00)01708-2]

PACS numbers: 43.35.Ud, 43.40.Vn [HEB]

INTRODUCTION

Entrainment, or mode-locking, whereby two or more
self-maintained oscillators lock together in frequency and
phase, exists in a fascinating array of physical and biological
systems. The earliest known reference to this phenomenon in
the annals of science was made by Christiaan Huygens, who
wrote to his father in a letter dated 26 February 1665:

. | have noted an impressive effect which no one
has yet been able to explain. This is that two clocks,
hanging side by side and separated by one or two fest,
keep between them a consonance so exact that the two
pendula always strike together, never varying.

In this work we describe the equivalent of the Huygens phe-
nomenon for acoustic resonators. Two cylindrical-duct reso-
nators are welded together side by side, the oscillating gas
inside the resonators acting the part of the clock pendula and
the duct cases acting the part of the wall upon which the
clocks were hung. The resonators exhibit mode-locking in
the same way that Huygens' clocks synchronized their mo-
tion. The oscillations in the ducts are maintained thermoa-
coustically, although to observe the Huygens phenomenon,
any method of producing spontaneous oscillations will do.
A thermoacoustic engine of a size and power density
suitable for heavy industrial applications (such as large-scale
natural gas liquefaction?) experiences tons of axial dynamic
force on its structure from the pressure oscillations of the gas
inside it, potentially inducing intense, damaging vibrationsin
this structure. In a separate paper® we show how these vibra-
tions can be canceled by rigidly attaching two engines to-
gether, side by side, and acoustically coupling two neighbor-
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ing ends through a narrow tube a half-wavelength long, thus
encouraging the oscillations in the two engines to be in an-
tiphase. If the engines are attached rigidly enough to move as
a unit, however, they are of necessity coupled through their
mutual structure as well as through the acoustic tube. Hence,
our particular goa in the present work was to discover how
efforts to cancel externa case vibrations in two rigidly at-
tached thermoacoustic engines, by coupling them acousti-
cally, might be helped or hindered by the Huygens-style
structural coupling. We refer to this coupling as ‘* mass cou-
pling,”” since the coupling occurs through forces on a shared
mass (the case) and is stronger if the oscillating gas is heavy
and the caseislight. Therefore, to increase the mass coupling
we used a pressurized, heavy gas—xenon—in the lightly
constructed engines used for studies of acoustic coupling.®
Without acoustic coupling, we found that the engines would
tend to mass-lock in antiphase, as desired for vibration can-
cellation. For the range of mass-locked states we could
achieve, we measured the dependence of the amplitude ratio
of the two engines and the phase difference between them as
afunction of their natural frequency difference. Even with 3
bars of xenon gas in our engines, the mass-coupling was
relatively weak; locked states existed only over a very nar-
row ‘‘capture bandwidth’’ of frequency differences (frac-
tional differences of order 0.001). This article provides a
quantitative explanation of these measurements, through
both theory and numerical simulations.

I. ESSENTIAL DYNAMICS OF MODE-LOCKING

Two self-maintained oscillators, such as pendulum
clocks, organ pipes, or thermoacoustic engines, may alter
each other’s frequencies enough to lock in frequency and
phase if they are sufficiently coupled. When the ** detuning’’
(the difference in natural uncoupled frequencies) is large, or
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FIG. 1. Mass—spring model of mass-coupled oscillators.

the coupling is weak, the oscillators *‘beat’’ at the difference
frequency, just like coupled linear passive oscillators. As the
detuning is decreased, or as the coupling is increased, the
beating slows down and eventualy stops, at which point the
oscillators are locked. The change in frequency of one oscil-
lator depends on its phase relative to the other, so the locked
state at a particular detuning is characterized by a corre-
sponding phase difference between the oscillators. In gen-
eral, the amplitudes in the oscillators also depend on this
phase difference, and there may be a net flow of energy from
one oscillator to the other if the amplitudes are not equal. In
an intermediate state, where the coupling is not quite strong
enough to lock the oscillators, they beat with a nonsinusoidal
envelope—the beat period elongates when the frequencies
have a close approach.

We use the following notation for two oscillators that
are mode-locked or nearly mode-locked:

(1) =R{W (t)eletr &0 @
() =R{W (1)e'lett eI @

where R{} indicates taking the real part. Here ¢, could be
displacements, pressures, velocities, or any other similar
variables of interest that depend on time t. We assume that
the amplitudes ¥, |, and the phases ¢, ,, are real and slowly
varying compared to the angular frequency w, and ¥, ;,=0.
The locked state is characterized by a relative phase between
the oscillators and a ratio of their amplitudes, which are

\PII

b=d— o, (ZFI- 3

We assume that oscillator | has natural frequency o, and
oscillator 11 has w;, when | and Il are uncoupled, so that the
difference in natural frequencies, or detuning, is

Aw=w“—w|. (4)

We let the compromise frequency o that the oscillators pos-
sess when they are coupled be a constant in time; the appar-
ent instantaneous difference in frequency between resonators
I[1'and | is SIMply A wjpg = ddldt.

The obvious mechanism for frequency shift in our sys-
tem is the moving case. If a simple harmonic oscillator of
mass m and stiffness k is anchored to an unfettered mass M,
the natural frequency is shifted according to
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For astraight cylindrical half-wave acoustic resonator whose
case of mass M is free to move, the corresponding expression
is [see Sec. Il B, especially Egs. (32) and (36)]

m2a?

I 2

9
M

wg= , My<M, (6)

ko

where 7ra/l is the natural angular frequency of a half-wave
resonator with sound speed a and length |, and my is the total
mass of gas in the resonator. Thus one might conclude that
the effective mass of the oscillating gas in a half-wave reso-
nator is m=(8/72) my=0.8my in the present context.

Il. THEORY
A. Mass-and-spring model

Before discussing coupled acoustic engines, we will
consider a simple system of masses and springs, arranged to
resemble two mass-coupled acoustic resonators. Figure 1
shows a pair of mass—spring oscillators that attach to the
same moving mass. The oscillators are identical except for a
slight difference in frequency; they have masses m and
springs k; and k;, hence aso natura frequencies w,
=k, /m and ;= Vk;;/m. Following Pippard* and Van der
Pol,® the feedback mechanism that maintains the oscillations
ismodeled by aresistance that can be either positive or nega-
tive, depending on the amplitude. We let

mw|

R| - ?
where X, is the amplitude in oscillator | and X is the steady-
state amplitude to which the oscillator relaxes. Recall from
Sec. | that the amplitude X, is assumed to vary slowly with
time compared to w. The equation of motion for oscillator |
in the absence of coupling is then

X3

xn) ()

i+ i+

T WX Q
where x,(t) is the displacement of the mass m from equilib-
rium, and the dot indicates a time derivative. We use this
particular form because if X is set to zero, one obtains the
equation for an ordinary damped oscillator, with Q akin to
the quality factor of the oscillator.

The exponent n depends on the mechanism maintaining
the oscillations. Here, we argue that a thermoacoustic engine
is governed by n=2 when comparing steady-state ampli-
tudes at different operating points. In the mass-and-spring
model, the power delivered or absorbed by the oscillator (the
“load’) is W, = — (mw/Q)(1—XJ/X"|x|%. In a thermoa-
coustic engine, such things as resonator dissipation and stack
power are aso proportional to amplitude squared,® so the
power produced by the stack is Wga=BP3=B8P2+W,_,
where P, is the unloaded pressure amplitude and P is the
loaded amplitude. Then we have W, = BP3— BP?, or W,
=—B(1-P3/P?) P2

1 Xo) 0 8
S X: ,
xn) ™
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In practice, we find that only the ratio Q/n, and not Q or
n separately, can be measured experimentally (and therefore,
for our purposes, Q/n is al that matters). In principle, one
should be able to determine both Q and n from transient
measurements; however, the thermal mass of a thermoacous-
tic engine causes the growth and decay time constants to be
artificialy long. The ratio Q/n that governs the steady state
can be measured by comparing states at various loads, but if
we consider only small loads (i.e., P~ P, or X~X;) such as
the engines experience when they are coupled, it is difficult
to distinguish Q or n separately.

To fully analyze the dynamics of the system, we could
write down the equations of motion with full time depen-
dence, carry out the time derivatives in these equations, with
X(t) having the form suggested by Egs. (1) and (2), and find
expressions for d¢/at and 9/ dt. Pippard’ treats a problem
very similar to ours in this manner. However, we are inter-
ested mostly in locked states, where everything is in the
steady state. We seek expressions for the state variables ¢
and ¢ in terms of known or measurable quantities like m, M,
Q, and Aw, and an expression for the ‘‘sensitivity’’ of the
system, d¢/JAw. This last quantity is of particular interest
in the vibration-cancellation context, because it tells how fast
a system tends to move away from some ideal phase (e.g.,
¢=1) as it is detuned;, when considering a mode-locked
pair of acoustic engines, a movement of phase away from
¢ =7 means more case vibration.

One may readily show, as has Pippard,” that a reactively
coupled pair of oscillators like ours has two possible locked
states, one nominally near ¢=0 and one nominaly near ¢
= . Which one is actually selected is of some interest; a
tendency for our coupled engines to mass-lock at ¢=0,
where both ‘‘masses’ are moving in the same direction,
could impair vibration cancellation. Fortunately, we may
take some comfort in the words of Huygens' describing his
mode-locked pendulum clocks:

. the motion of the pendula, while they are in con-
sonance, are not in phase, but they approach and fall
back with contrary motion . ..

Due to externa friction on our moving case, we expect the
mode with the least case motion to be favored. In a passive,
linear system, the modes that experience more damping tend
to decay faster, and we expect similar behavior in our sys-
tem, athough it is neither passive nor strictly linear. In any
event, like Huygens, we nearly always observe that our en-
gines mass-lock in antiphase rather than in-phase. [If one
extracts the mechanisms from two metronomes and mounts
them on a very light balsa-wood or perforated-aluminum
frame, and suspends this frame so it is free to swing, the
Huygens phenomenon is readily observable. One of us (PS)
has experimented with such a system, observing both in-
phase and antiphase locking of the metronomes, the former
especialy if the two metronome pendula are initially started
out with in-phase motion.]

To proceed with our analysis, then, we will let d/dt
=iw, and assume amplitudes and phases are constant in
time. We obtain
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iww X2
(C’)Iz_(‘)z)xl'}'TI 1—— X|= wj 20l (¢ ¢|)x (9)
|
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|(,U(,U|| XO
(wll )XII Q (1 == X”—w”e'(Q”c ¢||)X (10)
1

— a)ZXC= Iuwlz(ei(d’l*(ﬁc)xl —Xo)+ Mwﬁ(ei(%*ﬂsc)x”_ Xo),

(11)

where u=m/M. Referring to Fig. 1, note that X, is the mo-
tion amplitude of the common mass, and hence the right
sides of Egs. (9) and (10) are coupling terms. Equation (11)
can be solved for X, ; substituting this result in Egs. (9) and
(10) yields

i X3 .
(w|—a)2)-|-lewI ——2 =—u(wi+wie?), (12)
|
2 2 |(1)(1)|| XS _ 2 “ig
(0~ @) T _ﬁ —plojtoie™?). (13
I

We assume that u<1 and |1—X3/X? |<1, and that o)
~w;~w. Taking the rea part of Eq. (13) minus Eq. (12),
keeping terms to first order, and simplifying gives

Aw M
o E(g—l/g)cosdx (14)

To find a second equation, we follow Pippard’ and assume
that in the steady state, energy is conserved in the system,
i.e.,

X3

w2
X

mw S Moy [ X3
o 1M+ =5 2
Q Q X3

[Equation (15) may also be obtained from the ratio of the
imaginary parts of Egs. (12) and (13).] After some algebra,
this leads to the identity

X5 X3 1 1
e aale gl o

Using this identity, with the imaginary part of Eq. (12) minus
Eq. (13), yields

({—15)=2pQsiné . (17)

Equations (14) and (17) can be combined to eiminate £, to
obtain

1x*=0. (19

Aw ]
——- =n*Qsingcose; (18)
in the limit ¢— 7, this leads to

w do 1

— = (19

T Ao 7,2Q

This last equation is particularly useful for comparing the

present results with those for acoustically coupled engines.®
The results in this section are simple and roughly true

for any mass-coupled pair of oscillators. In the next section,

to obtain results specific to mass-coupled acoustic engines,
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we will derive differential equations isomorphic with Egs.
(9)—(11) for the acoustic pressure in the engines and the
forces on the case. We will derive equations valid for en-
gines with resonators of arbitrary cross section, and then
modify these for specific examples of interest.

B. Acoustic model

Consider two nearly identical acoustic engines, called
engines | and |1, which are rigidly attached side-by-side and
have a combined case mass M. Each engine consists of a
prime mover section, where heat is applied and the acoustic
power to sustain the oscillations is generated, and a resonator
section, which comprises the bulk of the volume and is
mostly responsible for determining the frequency at which
the engine runs. The engine cross section may vary with
position, but the radius is aways much smaller than the
length |. The engines are also assumed to be supporting what
is more or less a half-wavelength mode. The long axis is
labeled x, and is positive in the same direction as positive
displacements and positive forces. The prime movers are lo-
cated near the x=0 end, and we assume the acoustic pres-
sure at the x=1 end is known.

We assume that the acoustic pressure throughout each
engine as a function of x and t can be written as a product of
the pressure p(t) at the x=1 end and a spatia weighting
function w(x), that is,

pressure(x,t) =w(x)p(t) , (20
pressurey (X, t) =w(x)py(t) . (21)
Furthermore, in the manner of Egs. (1) and (2), we assume
pi(t) = R{Pel et 4}, (22)
pu(t) =R{P '+ o}, (23

Following Morse, and guided by the resultsin Sec. Il A, we
write the inhomogeneous wave equation for engine | as

wp,/a’=—ps, (24)

o) P(Z)

Viw—wp,/a?— —| 1- —

pl pl Q P|2
where a is the sound speed, p is the density, and the source
density s(x,t)=(1/V)dV/dt is the volume velocity per unit
volume imposed by the moving boundaries. Multiplying
both sides by —wa? and integrating over the volume leads to

,Jyswadv

fyw?dv’
(25)
(Note that pa? is a constant, so it appears outside the inte-
gral.) Thislast equation has exactly the same form as Eq. (8),
if the right-hand side is zero (no coupling), with the coeffi-
cient of p, identified as w,z. [In the limit that a is constant,
and Vw is zero at the walls, the vector identity V- (w Vw)
=(Vw)?+w V?w and Gauss theorem (for turning the vol-
ume integral of a divergence into a surface integral) yield

. Jya?wViwdv w|< P2\ .

0
+ = 1-—2|p=pa
P wav P Q Pﬁ)p' P

- [y a?wV3w av _ azf\,(Vw)ZdV:w2 26)
fyw2dv fyw?dv "
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in accordance with Rayleigh’s principle relating the fre-
guency of anormal mode oscillation to the ratio of the maxi-
mum potential and kinetic energies.>'%] Hence, an appropri-
ate equation for p, is

,Jvswdv
fyw2dVv’

To make this equation specific to mass coupling, con-
sider how the moving case of an acoustic resonator couples
to the gas inside. If the motion of the resonator is essentially
rectilinear, then (in the low-amplitude limit) changes in cross
section act like local volume-velocity sources (or sinks). In a
cylindrical resonator of varying cross-sectional area A(X),
one may write

b|+w|2p|+%(l— _2) pi=pa (27)

1 dA(x)
S(X,t)z —Wuc(t), (28)

A(X)
where u.. is the case velocity in the x direction, which is the
same for all x (if the case is assumed rigid). We can aso find
U. in terms of the forces on the case; considering the forces
exerted by both engines, assuming they are identical in ge-
ometry, and neglecting viscous forces, we can write

b F’DLPHJ'I dA(X)de
¢ M 0 dx

(29)

where M is the total case mass. Note that for each abrupt
change in cross section, say between x;— & and x; + &,

Xjt+e dA(x)
f ax wdx=[A(Xj+&)—A(X;— &) W(X;j) . (30)

XJ'—S
For example, Eg. (30) would apply to the endcaps of a typi-
ca resonator. Combining Egs. (27)—(29), and using
Jv{}dv=[i{ } Adx, we obtain

p2
- 2 (O]} ol -
p|+w|p|+6( 1_P_|2) P
a? [ [L(dA/dx)w dx]? .
_pa ol ] pi(1+7€'?). (31)

M Jow? A dx

We may now make use of the results previously ob-
tained for the mass—spring system. Starting with Eq. (31) for
p, and a similar equation for p,,, letting d/dt=iw, and then
dividing the first equation by p,(t) and the second by p;(t)
results in a pair of equations exactly like Egs. (12) and (13),
except that the constant uw? has been replaced by a more
complicated expression. We can therefore identify the effec-
tive mass ratio u for the acoustic system as

pa? [[y(dA/dx)w dx]?
o®M  [tw?Adx

and then all the results obtained for the mass—spring system
should apply to the acoustic system as well.

(32)

1. Obtaining Q of engines from experiment

We measure Q from the ‘‘load response’’ of each en-
gine. Suppose that instead of a moving case, the only
volume-velocity source is a small orifice at x=1 (eg., a
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valve) leading to a small volume, forming an acoustic RC
network which serves as a load. In the steady state, the dif-
ferential equation for the loaded engine leads to

~ 1) P2\ _ iwU
(wé—wz)p—kiwa( 1- ;) p= _pazflovvz—Aedx,
where p is the complex pressure amplitude at the loaded end
of the resonator, P is its magnitude, and U, is the volume
velocity exiting that end. Multiplying both sides by p*/iw,
where p* is the complex conjugate of p, and taking the real
part leads to

(33)

© 2 gy | 20T |y (3
Q 0 Thw? A dx P erle:
Since R{p*U}/2=W, , the time-averaged load on the en-
gine, it follows that
o fl 2 g w (&Pz) (35)
= — w X | .
0 2pa’\ oW,

(In this context, power flowing out of the engine is positive;
for constant heat input to the engine, pressure amplitude
drops as the load increases, so 9P?%/dW, is negative.)

Strictly speaking, the left side of Eq. (35) should be
2Q/n, but this is moot unless one can find n independently,
say by measuring the curvature of P? vs \NL. We find that
for the engines in the present work, P2 vs W, is quite lin-
ear, and the data have sufficient scatter to discourage higher-
order fitting. Since n=2 simplifies some of the math, it isa
useful assumption. The interested reader may verify that car-
rying out our derivations with arbitrary n leads to the same
results as ours, but for the appearance of 2Q/n instead of Q
(aslong as Py, =~Py).

2. Uniform-diameter engine

To enable ready comparison of theory to numerical
simulations in a later section, we consider the simple ex-
ample of an engine with a single cross-sectional area A,
throughout. If we further assume that the pressure distribu-
tion in such an engine is simply w(x) = —cos(w/a)x, then
Jo(dA/dx)w dx=—2A, and [yw? A dx= Al /2. Our formu-
las for u and Q become

_ 8pa’A, 8 my

= —— 36
H ®?lM w2 M (36)
and
wAgl [ IP? w my( JP?
= —|= = —], (37)
4pa’\ oW, | 2p2a® 2 | ow,

where my= pA,l is the mass of gas in the engine and p and
a are assumed constant.

3. Application to acoustic coupling

A useful check on part of our theory is to compare its
predictions for acoustic coupling with those published in
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Ref. 3. The sensitivity to frequency difference of two engines
coupled by a narrow half-wavelength tube of area A, is®

w) d¢ m (A O
(77 JAw =Fn 4(AC) re’ (38)
where r . is the radius of the coupler and & is the effective
thermoviscous boundary layer thickness 6= 6,+ (y—1)4,;
6, is the viscous penetration depth, &, is the thermal pen-
etration depth, and vy is the ratio of isobaric to isochoric
specific heats. Fy is a quantity called the ‘‘Helmholtz fac-
tor,”” which is proportional to /A . but depends only weskly
onr.and 6. A, is arbitrary and normally refers to a typical
cross-sectional area of the engines; if the engines have a
constant cross section A, then choosing A=A, makes Fy
=1. The Helmholtz factor represents the effect on sensitivity
of nonuniform cross section, e.g., of using engine geometries
that are more like Helmholtz resonators and less like straight
ducts. Combining our present general theory with that of
Ref. 3, we may find F analytically. A full expression for Fy
that is precisely accurate over a wide range of coupler diam-

eters has a very complicated dependenceonr., é,, and 6,
but reasonable accuracy is obtained with

acoust.

2 rl
Fy=—r f W2A(X) dx, (39)
ATIC 0

which is exact in the limit r.> 6§, |.—N\/2, where |, is the
resonant coupler length and X\ is the wavelength. In this
limit, Eqg. (39) predicts F,=2.83 for the engines in the
present work, letting A, equal the endcap area at x=1 and
performing the integral numerically using a DELTAE™ simu-
lation of a single engine (with air at 80 kPa as the working
gas). For comparison, our DELTAE simulation of two acous-
tically coupled engines predicts Fy=[(w/m)dpl/dAw]l
[(mIA)AIA(SIr:)]=2.80, a difference of only 1%. We
may also compare our present theory with the experimental
results in Ref. 3; in that work, two sets of sensitivity data
were obtained, one on the engines used in this work (which
have a variable cross section—see Fig. 4) and another on
engines that were nearly uniform in cross section. The ge-
ometry of the engines was the only thing that varied between
the two experiments, so if A, is chosen to be the same for
both types of engine, the ratio of the measured sensitivities
should be

sengitivity (var. A) _ Fy(var. A)
sensitivity (const. A)  Fy (const. A)

B JoW?A(x) dx (var. A)
~ ASLw? dx (const. A)

(40)

This formula predicts a ratio of 3.09, whereas the data and
simulations in Ref. 3 both indicate a ratio of 3.08, a negli-
gible difference.

IlI. COMPARING THEORY WITH NUMERICAL
SIMULATION

To compare our theory with numerical simulations, we
used DELTAE™ to model amass-coupled pair of engines with
uniform cross section. DELTAE (Design Environment
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for Low-amplitude ThermoAcoustic Engines) integrates the
one-dimensional wave equation in the small-amplitude
(“‘acoustic’”) approximation, including thermal and viscous
effects, according to the thermoacoustic theory of Rott.*2 To
simulate a mass-coupled pair of engines, we force al four
endcaps in the model to move with the complex case veloc-
ity, and require that the case acceleration be the complex
sum of all the end pressures times the cross-sectional area,
divided by the case mass (we ignore forces on the heat ex-
changers and stack). We then vary o, relative to w, by vary-
ing the ambient gas temperature inside simulated engine |1,
and note the effect on the phase difference ¢ between the
engines and on their amplitude ratio {. The results of this
simulation may be compared to the predictions of Egs. (17)—
(19), using Egs. (36) and (37) for x and Q. In order to obtain
Q, we simulate a single engine with no moving endcaps, and
alarge real impedance instead of a perfectly rigid endcap at
x=1. As the end impedance is lowered, the power flowing
out of the end increases and the pressure drops; the deriva-

tive 9P%/dW, is therefore obtained.

While these simulated engines have a simple shape, we
strive to make them similar in other respects to the real en-
gines we studied. The simulated engines are filled with 3 bar
of xenon, with an ambient temperature of 300 K; they run at
56 Hz and have Q~200 and my~0.06 kg; they are 1.6 m
long and have Ay~2.3x10"3 m?. They are also set to run
with cold-end acoustic pressure of about 16 kPa, since thisis
close to where our experimental engines were operated.

First, we will compare the Q that best describes the
simulated mode-locked states according to Eq. (17) with the
Q determined by observing the simulated |oad-response of
one engine as suggested by Eq. (37). By combining the two
equations, as well as Eq. (36) for w, one may obtain the
putative identity

gpP?

(~U{ AAG
AW,

sng oM

. (41)

The quantities on the left-hand side define the locked state,
and the quantities on the right are well-defined constants that
are independent of the locked state, if we restrict our atten-
tion to the limit ¢— 7, W, —0. In our simulations, every-
thing is held constant but Q; for each point, the exact pore
geometry of the stack is altered slightly to change the per-
formance of the engine (i.e., change 9P%/ W, ). We find that
over the range 70<Q=230, there is virtually no difference
between the left and right sides of Eq. (41). These Q values
are similar to those of our actual devices, and typical of the
passive Q’s of acoustic resonators with geometry and gas
properties similar to our engines.

Next, we may inquire whether the sensitivity d¢/dA w
of our ssimulated system matches theory. We use Eq. (19),
along with Egs. (36) and (37) for u and Q, and compare that
result to the value of (w/7)dd/IA w suggested by the smu-
lations in the limit ¢— 7. In order to make a meaningful
comparison, we must address one subtlety, that of calculat-
ing A w, the difference in natural frequencies of two acoustic
engines. This question has direct bearing on our experiments
as well. One can imagine defining the *‘natural frequency’’
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FIG. 2. The sensitivity d¢/dAw of a pair of mass-locked thermoacoustic
engines with uniform cross section, as predicted by theory (line) and
DELTAE simulation (symbols).

of an engine as the natural resonance of a column of gas with
the engine’s geometry and temperature distribution, or as the
frequency with which an engine with that geometry and tem-
perature distribution will run. When the frequency difference
between two engines is largely determined by the tempera-
ture of the gas in the resonators, the distinction between
these definitions is unimportant; but when two engines are
weakly coupled, even a very small change in frequency can
mean a relatively large change in phase, which can mean a
significant change in the acoustic power flow between the
engines. Thisin turn can cause significant differences in the
engines hot-end temperatures, and these differences can ul-
timately dominate the frequency difference. In this circum-
stance, the difference in the running frequencies of the two
engines may vary considerably from the difference in their
gas-column resonance frequencies.

Thisdistinction is of little practical importance in the big
picture, since one is generally more interested in how sensi-
tive the locked states are to objective external changes (one
engine sitting in the sun, the other in the shade; one engine
driving a bigger load, etc.) and not to changes in the ‘‘ natural
frequencies,”’ particularly if those frequencies are dominated
by the engines’ internal responses to external changes. How-
ever, the natura frequency difference is a very convenient
analytic tool, and useful for expressing general results about
mode-locked systems—e.g., the phase difference ¢ between
the engines is determined by Aw, however that Aw comes
about.

We compare our theory with simulation by calculating
the frequency difference two ways; the first, Aw=w,— o,
is the difference in the gas-column resonances; the second,
Aw=0Q,—Q,, is the difference between the frequencies at
which the engines will run, uncoupled, if they have the same
temperature distribution as when coupled.

Figure 2 shows the comparison of simulations and
theory; moving along the horizontal axis from left to right,
the coupling is weakened by increasing the mass M of the
combined engine cases, thereby lowering w, but leaving Q
unchanged. As the coupling gets weaker, ,— (), overesti-
mates the value of A w. Therefore we might expect that in an
experiment on a weakly coupled system, the values of ¢ and
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¢ for a given locked state might agree well with theory, but
the experimentally determined 0 ¢/JdA w will be smaller than
its ‘‘true’” value.

Acoustically coupling® two engines so that they lock
near ¢= 1, and keeping | ¢— 7| small enough so that 95%
of the case vibration is canceled when their frequency differ-
ence is as much as 1%, leads to (w/m)ddplIAw~2. Typi-
cally, an engine might have Q~ 100 and .~ 103, implying
that the mass-coupled sensitivity is (w/mw)ddldAw
=17 u?Q~10% This implies that the mass coupling is re-
aly very weak, and can be ignored in the vibration-
cancellation application. Absent heroic efforts, we are con-
fined to weakly coupled engines in the laboratory as well.
The engines we use for our experiments are charged with 3
bar of xenon (as in the simulations) and lightly constructed;
gtill, we find that 1/7ru?Q~10°.

A. Possible complications

In many presentations on mode-locking, few quantita-
tive results are given because it is usualy so difficult to
estimate the coupling strength. In Huygens workshop, his
clocks could have been coupling by uniform motion of the
wall, elastic waves in the wall, or even motion of the nearby
ar. (Huygens himself suggested that it was the ‘‘impercep-
tible agitation of the air caused by the motion of the pen-
dula’ that enabled the clocks to ‘‘communicate.’”’?) In addi-
tion, one would have to characterize the ‘‘load response’’ of
the clock mechanism to obtain the coupling strength.

By contrast, we can successfully characterize the cou-
pling of our thermoacoustic engines, given the nature of the
analytic results and our experience at making acoustic and
thermodynamic measurements. To illustrate how difficult the
problem can become, however, and why it often is not worth
the effort to make quantitative analyses of mode-locked sys-
tems, we will consider two of many possible subtle compli-
cations. external dissipation on the case and heat leak be-
tween the engines’ hot ends.

1. External dissipation

So far we have treated the coupling between the engines
as purely reactive, but we know the actual coupling imped-
ance must be richer in detail, and in particular it must contain
some resistance. One possible consequence of external resis-
tance (friction in the engine mounts, etc.) is that it may dis-
courage the ¢=0 mode. In an extreme limit, imagine that
the case mass becomes negligible and the only impedance is
a dashpot connecting the case to arigid wall. Obviously the
mode that encourages maximum motion of the dashpot will
suffer more damping than the mode that encourages mini-
mum motion. This may help explain why the in-phase, ¢
=0 mode was rarely observed by us (or Huygens). There are
other, more subtle consequences of adding resistance to the
coupling, however.

Consider the mass-and-spring model of Fig. 1. Imagine
connecting one side of a dashpot with mechanical resistance
R. to the case M, and the other side to arigid wall, so that
the coupling impedance Z.,=R;+ioM=wM(i+ a), where
a=R./oM. The additional dissipation alters the anaysis
presented in Sec. Il A. A new term i w?aX, is added to the
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FIG. 3. Normalized sensitivity of a mass-locked system with external resis-
tance R, as a function of a=R./wM, for various strengths of mass cou-
pling. The darker line corresponds to Q= 0.135, the value we estimate for
our experimental system of coupled thermoacoustic engines.

left side of Eq. (11), with consequences in Egs. (12)—(14).
The energy conservation equation, Eq. (15), becomes

(xg—x$)+(xg—xﬁ)=§x§, 42)
with consequences in Eq. (16). Equation (17) becomes
2puQsing
(~U=————. (43)
1+a+auQ

Finaly, in the limit ¢— 7, and with the approximation ¢
+1/¢~2 (which is true for our experimental system, but is
not generally true for all systems far from the center of the
“*capture band'’), we find

1+ a?+auQ
1+ al/nQ

w d¢ _ 1
gﬁAw_ﬂ-MZQ

(44)

Recall from Eqg. (19) that without external resistance, the
sensitivity (w/7)d¢lIAw=Umu?Q, SO we may View ev-
erything in the square brackets on the right side of Eq. (44)
as the effect of external resistance on sensitivity. Figure 3
shows this multiplying factor as a function of «, for a num-
ber of different values of nQ.

The behavior of these curves is not immediately intui-
tive. For strong coupling (large ©Q) the addition of dissipa-
tion increases the sensitivity, making the system more
weakly coupled; but for systems that are weakly coupled
aready, the addition of small amounts of external damping
actually enhances the coupling, quite dramatically. (For our
acoustic engines, this suggests that adding a small real com-
ponent to the coupling impedance results in a phasing, be-
tween the pressure at the endcaps of the resonator and the
case motion, that is more favorable to energy transfer be-
tween the engines.) Each curve has a minimum at a=1
—uQ, if uQ=<1. Only after the resistance becomes fairly
large does the coupling strength begin to diminish again.
This could have quite a noticeable effect on any ¢ vs Aw
data

In contrast, Eq. (43) is only a small perturbation away
from Eq. (17), for small external resistance. In addition, the
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perturbation appears only as a multiplicative constant, so it is
virtually impossible to tell from ¢ vs ¢ data whether thereis
external dissipation, as opposed to whether one’s values for
w and/or Q are inaccurate.

We have not pursued this much further, or tried to de-
vise a reliable method for measuring R;. In principle, one
can determine it from measurements of case motion; that is,
the phase between the motion of the case and the pressures
inside may indicate whether the pressure forces are driving a
reactance or a reactance and a resistance. Based on such
measurements, we estimate that for our system, «
=R./wM~0.1, a plausible value.

2. Heat leaks between engines

We now briefly discuss another complication: hesat flow-
ing between neighboring prime movers due to a temperature
difference that develops as a result of mass coupling. Imag-
ine that in a given locked state, engine | becomes ‘‘loaded,’”’
feeding power into engine 11, which is then *‘driven.”” The
amplitude P, in engine | will fall and its hot temperature Ty
will rise; conversely, P, will rise and Ty, will fal. If the
two hot ends have some thermal contact, a heat leak Qos
=UA(Ty,—Tyy) will flow between them, where UA is
some effective heat-transfer coefficient. This has the effect of
draining more power from engine | and feeding more into
engine 11, making the amplitude imbalance between the en-
gines that much greater. Hence, it makes dP2/dW, greater
than it would otherwise be, making Q larger and enhancing
the coupling. This additional coupling will not be apparent
when making a load measurement on a single engine, unless
great care is taken to duplicate the conditions of the coupled
state (e.g., pump the gas out of the other engine so it cannot
start, and manipulate its heat input so it aways has the Ty
that it would have in the locked state corresponding to the
first engine's P).

This aso points to a larger issue: the effect of different
modes of operation on engine coupling. Engines may be run
with constant power, constant hot-end temperature, or some-
thing in between (such as constant pressure amplitude, or
constant power delivered to a load, etc.) The general prin-
ciples developed so far should still apply; that is, if one can
find the **Q’’ that characterizes the engines in their typical
mode of operation, along with the effective moving gas mass
and the case mass, one should be able to estimate the cou-
pling strength. Care must be taken, of course, to always re-
examine the energy balance whenever the mode of operation
is changed. For instance, consider two mass-locked engines
whose hot-end and cold-end stack temperatures are held con-
stant. This example is of interest because material properties
usually limit how hot an engine may be run, and the need for
maximum power density and efficiency may require that the
engine be run at this upper limit. If one such engine experi-
ences an extra load as a result of being mass-coupled to
another engine, its hot temperature will tend to rise and its
oscillating pressure amplitude will fall; the temperature con-
trol will decrease the power flowing to that engine to main-
tain its temperature at the upper limit, lowering the pressure
still further. Thus one might expect that such engines would
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FIG. 4. Experimental setup for exploring the behavior of coupled thermoa
coustic engines. The insulation surrounding the prime movers and the
temperature-control coils is not pictured.

have very high &PZ/&W,_, and hence high Q, implying that
they would allow very little phase shift for a given difference
in natural frequency [see Eq. (19)]; this behavior is indeed
observed in simulations. However, the engines allow large
differences in pressure amplitude for small frequency differ-
ences.

Having given the reader a taste of the challenges in-
volved in making a good mass-locking measurement, we will
proceed to describe our experiments with small, mass-
coupled thermoacoustic engines.

IV. APPARATUS AND EXPERIMENTS

To explore mass-locking of acoustic engines experimen-
taly, we use two nearly identical thermoacoustic engines
which are rigidly attached side by side (these are the same
engines that were used for a portion of the acoustic coupling
work described in Ref. 3). Two neighboring ends of the en-
gines are connected by a coupling duct which can be inserted
or removed from the system by means of valves, enabling
the system to be acoustically coupled, or not, as desired.
Each engine consists of a section of duct of varying cross
section (the resonator) connected to a thermoacoustic prime
mover, by which we mean an electric heater, a water-cooled
heat exchanger, and a stack of paralel plates between them;
these sustain the oscillations in the resonator when the en-
gine is running.

Figure 4 shows the essentials of the experimental setup,
and some details of the thermoacoustic prime mover hard-
ware. Note that the engines share a water jacket that cools
their cold heat exchangers, and both are welded to a common
plate at the other end. The engines are aso joined by two
narrow, 50-cm-long plates that are welded between the 50-
cm-long ‘‘fat’”’ sections of the resonators. A section of each
resonator is wrapped with copper refrigeration tubing, which
circulates water from a temperature-controlled bath. Thus the
gas temperature in each engine can be varied independently,
enabling control of Aw. A pressure sensor is mounted at the
end of each resonator where it joins the coupling duct. We
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take the signal from the sensor in resonator | (pressure sensor
I) to represent p,(t), and that from pressure sensor | to rep-
resent p;(t). Using p, as a reference to a lock-in amplifier
and using p,, as the input signal allows a direct measurement
of ¢. Independent monitoring of pressure sensors | and 11
gives P,(t) and P, (t). Accelerometers on the cases measure
case vibration in the axial (x) direction, and numerous ther-
mocouples (not pictured) provide temperature data on the
gas near the hot end of the stack, the cooling water, the water
in the coils wound around the resonators, and the gas inside
the resonators. Multimeters monitor the input voltages and
currents to the tube heaters that power the engines. The ac-
celerometers are used to verify that the two engines, welded
together, act like a rigid structure, and that vibrations are
indeed canceled when the phase between the engines ap-
proaches w—we find that cancellation of case vibration is at
least 99.5% complete when ¢= 7+ 0.002. The engines are
filled with xenon, with the mean pressure p,,= 303 kPa; they
run at 50 Hz, in a room temperature environment (rejecting
heat at 300 K). The combined case mass of the engines,
including water in the heat exchangers and such, is M
=11 kg.

To assist us in interpreting our data, we simulate the
system using DELTAE. We use a single simulated engine,
without moving endcaps, to help us estimate . and Q for the
system; we use a pair of simulated engines, whose combined
case mass moves in response to the oscillating pressure, to
compare simulated mode-locked states with measured ones.
The simulated mode-locked system involves a few approxi-
mations; for instance, the forces on the heat exchangers and
stacks are neglected, and the changes in cross-section are all
treated as abrupt (including the truncated cones shown in
Fig. 4). Nevertheless, we expect that the agreement between
experiment and simulation should be reasonable.

The single simulated engine is used to estimate w(x),
the pressure waveform in the engines. The only pressure
reading taken in each experimental engineis at the end of the
resonator (the ‘‘cold end’’), as shown in Fig. 4, so we trust
DELTAE's linear acoustics to estimate what the pressure dis-
tribution in a given geometry should be. Combined with our
knowledge of A(x), this alows us to numerically carry out
the integrals in Egs. (32) and (35).

To obtain Q, we also need 9P%/dW, . To measure this
quantity experimentally, we use a precision leak valve in
series with a small cylindrical ‘‘tank’’ of volume V=150
cm® to form an acoustic RC load, and attach this load to the
end of one engine resonator at a time, observing changes in
the end pressure of that engine as the valve is gradually
opened. The other engine is pumped out for this measure-
ment, so it cannot start; some heat is still applied to it, how-
ever, to maintain it near the temperature it would have if it
were running. The actual power dissipated at each valve set-
ting is estimated by using a pressure transducer within the
tank, along with the one at the end of the engine, to measure
the pressure difference across the valve. This pressure
difference and the tank volume V ae wused to

caculate the dissipated power according to™ W,
=wV|p||pr|SinGi2yp,,, where p is the oscillating pressure
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FIG. 5. Load responses of the engines used in the mass-locking experiment.
The squares are engine | data and the circles, engine I1; the lines are linear
fits. Each data set on a given engine was taken with the neighboring engine
hot, but not running, to approximate the heat leak that exists when both
engines are running.

at the end of the engine, p+ is the pressure in the tank, and 6
is the phase by which p leads p+.

In these measurements, we not only had to contend with
heat leaks between the engines, as discussed earlier, but also
ordinary heat leaks from the engines to the ambient. Rather
than attempt to subtract the ambient heat leaks from the elec-
tric power going into the engines and manipulate the electric
power to maintain constant heat input, we chose to simply
maintain constant electric power, and characterize the load
performance of the engines as they were, leaks and al. Fig-
ure 5 shows the results; evidently 9P2/dW, is fairly linear in
the region studied, but the data have sufficient scatter that a
higher-order fit is probably not warranted. The data for each
engine were taken over the range of pressures which that
engine experienced when the data on locked states were
taken. Of interest is the difference in slopes between | and I1;
apparently the two engines do not perform identically, de-
spite being constructed ‘‘identically.”” One difficulty in pre-
dicting the performance of these particular engines, and in
modeling them, is the use of tubular heaters in the prime
movers (see detail in Fig. 4). These heaters are robust and
easy to bend into a desired shape, but are not as well under-
stood thermodynamically as standard shell-and-tube or
parallel-plate heat exchangers.

We find that Q,=73 and Q;,=50, with Q, the average,
being 62; by simulating this measurement in DELTAE, we
find Q=61. Because of the difficulties in precisely modeling
the hot ends of these engines, and the large difference be-
tween Q, and Q,;, this striking agreement must be a bit
coincidental. The difference in measured Q between the en-
gines adds a dight offset of order [(Q,—Q,)/Q ]? to Eq.
(17). We do not treat the question of the offset rigorously,
but merely measure it and subtract it from our simulated and
theoretical results.

We may also use an experimental observation to obtain
an approximate value for u, the effective mass ratio. Observ-
ing the engines when they are coupled but not mode-locked,
and measuring the frequency and phase of both engines as a
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FIG. 6. Frequency as a function of the phase between two mass-coupled
engines that are on the verge of locking.

function of time, one may obtain a plot of frequency versus
phase for the engines as they beat. Such a plot is shown in
Fig. 6; note that the frequencies are their lowest near ¢
=1, 3m,5m, ... and their highest near ¢=0,2m,4m, ...,
consistent with the idea that a moving case shifts frequencies
up. By comparing the high and low values, we find that the
frequency shift |Af|/f~0.002; if we assume f2=f3(1+ u),
then u=0.004. Since this includes the moving gas in two
engines, we may guess that u for one engine, that is, the u
=m/M to use in Egs. (17) and (18), is u (expt.)~0.002.
Using our theory, together with our DELTAE model to find
w(x), we find that the effective mass m=0.024 kg for our
engines, with M =11 kg, u (theo.)~0.0022.

We are now poised to predict {— 1/ versus ¢ for our
engines; we choose ©Q=0.0022X 62=0.135 as our ‘‘theo-
retical’’ coefficient in Eq. (17). This equation can be com-
pared to actual phase differences and amplitude ratios at
various locked states for our engines. We found that the en-
gines would readily mode-lock, and the phase could be var-
ied easily by changing the temperature of one of the cooling
coils; however, we found that the states were not particularly
stable, but very sensitive to small changes in temperature.
Only by very carefully ‘‘teasing’’ the system could it be
made to settle at a particular state (largely because the hot
temperatures need to equilibrate to establish a stable state).
Figure 7 shows a comparison between theory and experi-
ment. Considering all the approximations that have been
made to get to this point, the agreement between the three
methods is remarkably good.

We aso try to compare theory and experiment for EQ.
(19), but here we must grapple with the difficulty in measur-
ing Aw. The most straightforward way to measure the dif-
ference in frequency between two coupled engines is to de-
couple them and measure the beat frequency; however, we
know from Sec. Il that this frequency difference is not nec-
essarily the ‘‘natural frequency difference’’ required by
theory. In addition, when the engines are decoupled, the hot-
end temperatures immediately begin to shift, making the
measurement of a long beat period somewhat difficult. We
have chosen an indirect, but simpler, method to find Aw
=0,,—Q,. Werecord phase versus (),— (), for the engines
when they are acoustically coupled, using the coupler that is
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already in place. An extra 130 kg of mass is clamped to the
engines during the acoustic measurement, to remove all ef-
fects of mass-coupling. Subsequently, during the mass-
locking measurement, after the engines have established a
stable mass-locked state we momentarily open the acoustic
coupler valves and record the phase, which can then be re-
lated to afrequency difference. Figure 8 shows a plot of ¢,,
the phase at which the system is mode-locked due to acoustic
coupling, versus the normalized frequency difference
Awlo~(Q—O)/w. Near ¢,=m, the data are linear, and
we use the slope in this region to obtain the relationship
between ¢ and Q,,—Q,. We have chosen a relatively
narrow-diameter coupler for this part of the work, so that the
acoustic coupling is fairly weak (although not as weak as the
mass coupling). Thus the phase of the acoustically locked
state is a sensitive measure of frequency difference. We al-
low the engines to lock through mass coupling (i.e., with the
acoustic coupler’s valves closed), record the steady-state am-
plitudes and phases, and then throw the valves open momen-
tarily and record the phase ¢, , thus obtaining Q,— €. As

107/ 8

or/8
N
T
7n/8
-0.002 0.000 0.002 0.004
Aw/@

FIG. 8. The phase of the locked state when the engines are acoustically
coupled, achieved when the coupler valves in Fig. 4 are open, versus the
frequency difference estimated by measuring the beat period when the
valves are closed. In this measurement, an extra 130 kg of mass is clamped
to the engines, to discourage any mass-coupling.
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FIG. 9. The phase difference of the mass-locked state versus the frequency
difference estimated from the corresponding acoustically-locked state. The
quantity « is defined in Sec. 11l A 1, and represents the degree of external
dissipation in the system, such as that caused by friction in the supports.

expected, we find that ¢, drifts, since the hot temperatures
drift as soon as the valves are closed, and thus Q,,— (), isa
moving target. We find that measuring the phase about 5 s
after the valves are opened gives a repeatable, if not wholly
accurate, value for ¢, .

Figure 9 shows our mass-locked ¢ vs Aw/w data, com-
pared with two theoretical predictions—one assuming no ex-
ternal dissipation, and another assuming moderate external
dissipation. We were able to achieve mass-locking only be-
tween 37/4< $p<57/4; thisisin contrast to the acoustically
coupled engines studied in Ref. 3, which would lock between
m/2< $p<3w/2. We may use our theory to predict the cap-
ture bandwidth; starting with Eq. (18), we ask what angle ¢
makes A w amaximum. Thisis equivalent to seeking ¢ such
that d(singcosp)/d¢p=0. This occurs when ¢=(2n
+1)m/4, n=0,1,2, ..., and hence when singcos¢=3. For
a system whose band center is nominally at ¢= 7, then, we
predict

Aw 2
i(—) =i¥ a g=m*r—. (45)

The experimental phase limits agree well with this predic-
tion, but the predicted frequency bandwidth is much nar-
rower.

The shapes of the experimental and theoretical curves
have some qualitative similarities, but as expected (recall
Fig. 2), the slope of the experimental curve is much less than
that predicted by theory. We found that measuring ¢, ‘‘im-
mediately’’ (within 0.5 s) after the valves were opened ap-
peared to approximately double the slope; however, the
valves were operated by hand and took several tenths of a
second to open, so these data are of dubious value. While the
simplest theory (no dissipation) predicted that the mass-
coupling in our system should have been about 25 times
weaker than the acoustic coupling, the data suggest it is only
about 10 times weaker. External dissipation brings these
numbers into closer agreement, as shown by the dashed line
inFig. 9, but it would require three times as much dissipation
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as we estimate for our system to make the experimental and
theoretical curves coincide. We believe inability to measure
the “‘true’’ value of Aw/w is the biggest source of error.

Since Aw/ w is of mostly theoretical interest anyway, we
consider what effect objective changes might have on our
system. The DELTAE model, which agrees well with theory
and experiment as demonstrated by Fig. 7, suggests that a
0.03-K change in the resonator gas temperature of one en-
gine, within the section wrapped in copper tubing, would
cause a change in phase angle A ¢ = 7r/16. The measurement
of gas temperature in our experiment was too coarse to verify
this, but if we assume it is correct, it demonstrates again how
very sensitive mass-coupled engines are, compared to the
acoustic coupling necessary to cancel vibration. For com-
parison, consider an acoustically coupled system of two en-
gines, designed so that 95% of the case vibration is canceled
when A w/ w=0.01. Thisimplies |A ¢|=| ¢ — m|<0.05 when
the difference in resonator gas temperatures is AT/T,,
=0.02, or AT=6 K if the mean temperature T, is about 300
K. For such a system, (T,,/m)A¢/AT~1; for our mass
locked system, (T,,/7)A ¢/ AT~ 600.

In conclusion, we have shown that the Huygens effect,
or mass-coupling, is sufficiently weak in thermoacoustic en-
ginesthat it may be ignored in many circumstances, although
a precise measure of its weakness will often be difficult to
obtain. It is also apparent that the natural mode for the en-
gines to mass-lock has the correct phase relationship to mini-
mize motion of the common mass. Thisis further encourage-
ment that mass-locking will not interfere with the canceling
of engine vibrations by acoustic coupling.

There are some circumstances, of course, where the
mass-coupling could be significant. Engines that use a liquid
as the working fluid (such as a liquid-sodium thermoacoustic
engine®) could have u~ 1. This could also be true of acous-
tic engines whose resonators include moving parts, such as
magnets for generating electricity. This strong coupling
might in fact be an advantage, if the proper suspension or
supports for the engines can encourage them to lock in an-
tiphase, thus lessening or eliminating the need for any acous-
tic coupling.
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